SEPTEMBER/OCTOBER 1994

NOVELL. RESEARCH

NetWare Telephony Services
for Application Developers

Kevin White
Software Engineer
Novell Developer Support

This article offers an in-depth overview of the tools and
techniques that developers will encounter in their application
development with Novell's Telephony Services Application
Programming Interface (TSAPI). This DevNote covers such topics
as the following: the Telephony Server (TServer) NLM, which
receives and processes client TSAPI requests; TSAdmin, the
Telephony Services administration tool; the Simulator, which
allows developers to test and debug programs without running in
a production environment; and such TSAPI programming
elements as ACS Streams.

43

44

Trademarks

NetWare, the N-Design, and Novell are registered trademarks and the NetWare
Logotype (teeth), Internetwork Packet Exchange, IPX, and SPX are trademarks
of Novell, Inc. UNIX is a registered trademark and UnixWare is a trademark of
UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc.

Intel is a registered trademark of Intel Corporation. IBM and OS/2 are
registered trademarks of International Business Machines Corporation. Microsoft
and MS-DOS are registered trademarks of Microsoft Corporation. All other
product names mentioned are trademarks of their respective companies or
distributors.

Disclaimer

Novell, Inc. makes no representations or warranties with respect to the contents
or use of these Developer Notes (DevNotes) or of any of the third-party products
discussed in the DevNotes. Novell reserves the right to revise these DevNotes
and to make changes in their content at any time, without obligation to notify
any person or entity of such revisions or changes. These DevNotes do not
constitute an endorsement of the third-party product or products that were
tested. Configuration(s) tested or described may or may not be the only available
solution. Any test is not a determination of product quality or correctness, nor
does it ensure compliance with any federal, state, or local requirements. Novell
does not warranty products except as stated in applicable Novell product
warranties or license agreements.

Copyright © 1994 by Novell, Inc. All rights reserved. No part of this document
may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise,
without express written permission from Novell, Inc.

Novell, Inc.
122 East 1700 South
Provo, Utah 84606 USA

Novell Developer Notes— September/October 1994

Contents

Introduction 47
Telephony Architecture 47
Development Tools 47
Software Installation 49
Administration 50
Simulator 50

Simulator Configuration Process 51
Programming for TSAPI 52
Sample Code e 55
GettingHelp 58
Futureof the SDK 59

NetWare Telephony Services for Application Developers 45

46 Novell Developer Notes— September/October 1994

Introduction

Telephony
Architecture

Since Novell introduced its NetWare Telephony Services SDK
several weeks ago, it has been exciting to see the potential of this
product start showing up in various applications. The SDK
provides services that have not been easily accessible until now.
In conjunction with Novell Developer Support’s desire to help
developers in every way possible, there will be more articles and
information coming out about the Telephony Services API
(TSAPI), which we hope will make it easier for developers to
integrate TSAPI into their applications.

This article offers an in-depth overview of the tools and
techniques that developers will encounter in their application
development with Novell's TSAPI. Future articles will focus on
just one or two of the issues mentioned here and take them to a
much lower level.

The first consideration in developing a Telephony application is
understanding the architecture.

As Figure 1 shows, the Telephony services are actually comprised
of several components.

Figure 1: Telephony services are made up of such individual
elements as the server, the PBX, and associated NLMs and
drivers.

Novell NetWare Network Phone System

S g

NetWare File Server

T—— O+ ‘

Windows Client Windows Client

NetWare Telephony Services for Application Developers a7

Development Tools

On the Novell NetWare network side of the figure, there is a
NetWare file server with its accompanying client workstations.
On the other side, there is a Private Branch Exchange (PBX)
with several phones attached to it. The interface is provided by
some sort of a hardware link and a driver for that hardware on
the file server.

The type of hardware link depends on the PBX in use. Whatever
the link, it is the basis for the communication necessary for
NetWare to provide its TSAPI services.

The NetWare server also has a Telephony Server (TServer)
NetWare Loadable Module (NLM) loaded. The TServer’s
responsibility is to receive TSAPI requests from client
workstations, convert them into a predefined interface, and pass
them along to whatever PBX driver happens to be loaded. The
PBX driver does the "dirty work" of controlling the PBX to
provide the services that have been requested.

Client workstations on the Novell NetWare network send
requests to TSAPI, which are transported over the wire to the
TServer. These requests on the client are made from an
application to some sort of library that will provide the necessary
code to transfer the request to the TServer. At this time, the
requests are provided to Windows applications through DLL files
and to NetWare NLMs through TSLIB.NLM. Other platforms
will be supported in future releases of NetWare Telephony
Services.

Several tools are available for use with TSAPI application
development. These include trace utilities, the PBX Simulator,
and a test application. They are described in Table 1.

TSAPI Development Tools

Tool

TSCALL.EXE

For use on

Windows Client

Description

TSCALL is a Windows application that uses Telephony Services to
provide basic call control, such as making and clearing calls. If other
telephony services don't appear to be working, try TSCALL and see if it
works. This can help determine if the problem lies in the application or
in the hardware or software setup of NetWare Telephony Services.

CSTASPY.EXE

Windows Client

CSTASPY is a Windows application that can be used to trace messages
going back and forth from TSAPI applications to the TServer. If an
application isn't functioning as desired, try CSTASPY to give you a
message trace. Check to make sure that all messages are being sent and
received as they should be.

48 Novell Developer Notes— September/October 1994

CLSIM.EXE Windows Client

CLSIM is used in conjunction with the SIM.NLM on the TServer. This
is the Windows client piece, which will allow you to test sending certain
messages to the Simulator module to determine that they are working.
This can also be used in the background, while your application is
running in the foreground, to give a similar message trace as CSTASPY
does on a "live" PBX.

SIM.NLM Telephony Server

SIM.NLM is a "PBX Simulator.” This is a very useful developmental

tool because you don't have to have a real PBX to develop and test a
TSAPI application. The Simulator emulates a PBX and makes the
TServer and TSAPI applications believe they are actually controlling a
real PBX. This is useful when you don't want to put a test application in
a production environment.

Software
Installation

These tools can help developers rapidly produce quality
applications.

Installing the NetWare Telephony Services is a fairly simple
process, which is described in the documentation. However, there
were some last minute changes that are included in the readme
file, which should be printed and kept with the printed manuals.

If followed, the readme file and printed manuals make installing
and loading the basic Telephony Services very easy. The
documentation for the Simulator, however, is not complete at this
time. There is a readme file on the Simulator diskette, and the
necessary information will appear in the printed manuals in the
future.

The Simulator requires several files to function properly. The
following table lists each of the files and where they should be
copied to.

Files for use with the Simulator

File Name Located on Copy to
- ___|
SIM.NLM Simulator Diskette SYS\SYSTEM on the TServer
CLSIM.EXE Simulator Diskette Any drive accessible to the Windows client
CLSIM.HLP Simulator Diskette Any drive accessible to the Windows client
ATTPRIV.DLL G3PDDSK?2 Diskette Client's \WINDOWS directory

In order to write applications that use TSAPI, the header and
library files must be available to be compiled and linked with
your application. These files are on the TSAPI SDK diskette. As
with any external libraries, these files need to be copied to some
directory that is accessible to your compiler.

NetWare Telephony Services for Application Developers 49

Administration

Simulator

After installing the software, you need to complete certain
administrative tasks before using Telephony Services. For
example, you need to specify which users are to be allowed to use
Telephony, and which devices they can control. You do all of this
through the TSAdmin (Telephony Server Administration) tool,
which can be installed when you install Telephony Services.
Instructions for the use of this tool are included in the manuals.

The Simulator has a specific purpose--helping application
developers test and debug programs without running in a
production environment. Maybe you don't want your program to
run in the production environment because it is unstable and
needs to be fully tested before people start using it. Maybe you
just don't have a physical PBX for use in your system. Or maybe
you just want each engineer to have his or her own environment
to program and test in without affecting each other, and you
don’t have the money or office space to provide each engineer
with a PBX (who does have that kind of money?).

Whatever the reason, there are many situations when it would be
desirable to make TServer and TSAPI "think" they are in a PBX
environment without having a physical PBX present. This is
what the Simulator is used for.

At this point, it is assumed that the Simulator is properly
installed. The correct files should be copied both to the client and
server machines, in the directories specified in the table above. It
is also assumed that the TServices Admin utility has been used
to configure users and their devices for use with the TServer.

You have to configure the Simulator before using it. Because its
function is to emulate a PBX, you must configure it just as you
would configure a physical PBX. Phone extensions need to be set
up, as well as ACD and Trunk groups. It is easy to confuse this
configuration with the user security database configuration
performed through the TServices Admin utility. Remember that
this is very different--the Simulator has to be configured like a
PBX.

Use the CLSIM utility (briefly described above) to configure the
Simulator. CLSIM is a Windows application used for just about
everything associated with the Simulator. The first time you run
the CLSIM, use the Configuration options to set up the "fake
PBX." After configuring the Simulator, save the configuration file
to the SYS\SYSTEM\TSRV\ directory with a .SIM extension so
that it is available to the SIM.NLM when it is loaded.

50 Novell Developer Notes— September/October 1994

Simulator Configuration
Process

After entering the CLSIM utility on the Windows client
workstation, use the First Digit Table option from the
Configuration menu. The "first digit table" is where you say,
"Extensions that start with a 9 and have 3 digits are of this
type." This is how a physical PBX works in its most simple form.

This is also how the Simulator knows how to emulate the
functionality of a real PBX.

You need to configure the same setup here as you do in the
TServices Admin utility. For example, if | created a user in the
user security database that has a phone extension of 3457, |
would need to use the First Digit Table to set up First Digit of 3
as "extension" with the Number of Digits set to 4. This way,
when the Simulator uses this configuration file, it handles any
devices that start with a 3 as phone extensions.

You can also configure act groups or trunk access codes here.
After you have configured the First Digit Table to make available
any type of combination you will use in the TServices Admin
utility, you can select the OK button to close this window.

Next, you need to create the actual Stations, Trunk Groups, and
ACD Groups. You can create these using the appropriate options
from the Configuration Menu. Remember to create the
appropriate stations and other devices according to the same
numbers you used in the TServices Admin utility (or you will get
an error message when you try to "dial" one of the extensions).

After you have configured all of the appropriate PBX information,
you should save this file, using the File/Save option, to the
SYS\SYSTEM\TSRVN\ directory, with a filename that has a
.SIM extension. This file is now available to the SIM.NLM when
it loads on the file server. You can have more than one of these
configuration files on the server, but the SIM.NLM can only use
one of them at a time. This only makes sense, because the
Simulator can only emulate one physical PBX at a time.

When the configuration file has been created and saved correctly,
the SIM.NLM module must be loaded on the server. To do this,
go to the NetWare server and at the system console prompt type
LOAD SIM filename (replacing filename with the configuration
filename used earlier).

For example, if | created a TEST.SIM file through the
CLSIM.EXE utility on the Windows client, 1 would type LOAD
SIM TEST.SIM. If the TEST.SIM file was not saved to the
SYS\SYTEM\TSRYV directory, it will not be loaded properly.

NetWare Telephony Services for Application Developers 51

Programming for
TSAPI

Once the Simulator has been loaded with the correct .SIM file,
you can go back to the Windows workstation and begin using the
Simulator. Instructions for its use are in the printed manuals.
First, you have to "start" a Simulator session from the RUN
menu in CLSIM. After correctly entering the NetWare TServer’s
server name, you will see a CONFIRM Open Stream message in
the client portion of the CLSIM. You can now begin sending
messages to the TServer, through the Send Message menu.

For example, if 1 had defined phone extensions 7559 and 3800,
both in the configuration file, and in the TServices Admin utility,
I could choose Make Call from the Send Message menu, and have
7559 call 3800. The Simulator would then tell the simulated
phone 7559 to call the simulated phone 3800. Of course, you
won't hear any physical devices start ringing, but you will have
messages appearing telling you that the call was created. You

use the rest of the Send Message options in the same way. They
are documented in the Simulator User’s Guide.

I suggest experimenting with the Simulator, both with the
CLSIM program as well as the menu options available on the
TServer in the Simulator. These tools provide a powerful set of
resources to developers who for one reason or another aren't
using a physical PBX.

There are several key concepts to programming for TSAPI that
you should be familiar with. The SDK is different from most
SDKs, but is very powerful and flexible. It accommodates many
programming styles and needs. The more familiar you are with
the overall functionality and services provided by the TSAPI
SDK, the easier and more enjoyable time you will have
integrating phone control into your applications. You should take
the time to read through the documentation, because it will pay
off both in saved time and avoided frustrations.

One of the most important concepts to grasp is where the
responsibility lies when calling TSAPI services. Refer to the
diagram presented in the beginning of this article. Now let's
think of a programming example. Your Killer Windows super-
program makes a function call to the TServer. The TServer needs
to give your function a return code--either it worked or it didn't.
So the TServer checks to see if it can handle the function call you
requested.

Are all the prerequisites filled? Are there enough system
resources to do what you wanted to do? Is anything obviously
wrong or preventing the successful completion of the function
call? No? Good! Send back a successful return code. But what's
wrong with this picture? Just because the TServer successfully
accepts what your function call requests doesn't mean that the
PBX driver will, or that the PBX itself will.

52 Novell Developer Notes— September/October 1994

When you get a return value to a function call with TSAPI,
remember that this is just the return code from the TServer.
There are still other ways to make sure the PBX driver was
successful in your request. This is done through Confirmation
Events.

There are different types of events. We will only discuss the
simplest, Confirmation Events. Whenever the PBX driver needs
to pass information along to the Client (via the TServer), it sends
an event notice. Your application can do whatever it wants when
it receives the event notices. There are even different ways to
receive these notices (this will be discussed in a future article).

The important question here is "What type of event was it?"
Confirmation events are the events that tell us that the service
we requested actually did get performed as requested. Now our
application knows it was successful. The important thing to
remember is that you need both a successful return code from the
function call to the TServer as well as a Confirmation Event from
the PBX driver in order to be sure that the function call was 100
percent successful.

One of the most basic concepts to understand once you start
TSAPI programming is ACS Streams. A Stream in TSAPI
programming has a different meaning from other streams you
may have worked with (or waded through) in the past. I like to
compare a stream to a door.

You can't walk through a closed door just as you can't make
TSAPI calls without first opening a stream. You open a stream
with the acsOpenStream() function call. But just because this
function call doesn't return an error message doesn’'t mean it
worked. Again, it’s like opening a door. Just because you twist
the door knob doesn’t mean the door will open. It may be locked
or there may be some object in the way.

The same holds true for opening a stream. You can make the call
successfully, but it still may not be able to open the stream.
Maybe there aren’t enough resources. For whatever reason, you
need to wait until you receive the Confirmation Event, as well as
the successful return code to your function, before making further
TSAPI requests.

When you open a stream, among many other parameters, you
need to tell TSAPI which TServer that you want to connect to, as
well as a username and password. Telephony Services keeps a
user security database that keeps track of users and which
devices they can control. It also uses the NetWare bindery.

NetWare Telephony Services for Application Developers 53

54

The bindery is the database kept by the NetWare server of all
objects on the server, such as users, groups, printers, etc. When
Telephony opens a stream, the TServer checks the username and
password to verify they are a valid user on the NetWare file
server. Once this is verified, the TServer checks the user security
database to see if the username appears there. If it does, the
stream can be opened.

Any function calls that are subsequently made with this stream
will have access to any devices (and only those devices) that the
user is set up to control through this security database (which
was configured through the TServices Admin utility).

Once your stream is successfully opened, the stream handle is
passed as a parameter in nearly every function call to TSAPI.
The stream is how the TServer keeps track of all the necessary
information that as a programmer you don’t have to worry about,
but is essential to the TServer in order to track your use of
Telephony Services. The stream is your logical link to the
TServer, and it is your only logical link. That's why it's so
important.

You can now make other function calls for call control or other
services, as provided by TSAPI. This brings up another important
point. You need to know the difference of functionality from a
programmer’s point of view between the TServer and the PBX
driver.

The TServer includes a full level of functionality, as defined by
the NetWare Telephony Services SDK. However, different PBXes
have varying levels of functionality, and their drivers may not
implement all of the functionality the PBX provides. It is not
common for a PBX driver to provide support for 100 percent of
the services to an application that the TServer does.

The various PBXes each provide a different subset of the services
that the TServer does, though each of them will provide some of
the most basic services, such as making and clearing calls.
Function calls are available to help determine the functionality
provided by a particular PBX driver, which your application can
make in order to determine if it will be "safe" to make certain
function calls to TServer. If you want your application to be very
generic and portable between PBXes, the application will have to
make use of only the most basic services.

Some of the advanced features of different PBXes can be
implemented through software rather than relying on PBX
capabilities. However, this will be less efficient, take longer to
develop and test, and some of the features can be difficult at best
to implement in such a way. This is an important consideration
to take into account when designing your Telephony application.

Novell Developer Notes— September/October 1994

Sample Code

After your application has made all of the TSAPI calls it needs,
and is ready to quit, don't forget to "close the door." The stream
that was previously opened needs to be closed, not a difficult
process but an important one.

The following program is a simple one that opens a stream,
makes a call, and closes the stream. It first asks for the
username and password, which are necessary for opening the
stream. Then it asks for the extension to call from and the
extension to call.

It is written for Borland C/C++ 4.0, using EasyWin libraries that
take care of opening and creating a window, and emulate a DOS
box by supporting the standard printf(), scanf(), etc. teletype
functions. This makes the program shorter and easier to
understand. Were | to write a professional application, of course,
I would use a standard Windows interface of menus, buttons, etc.

You can use this code as an example or as a shell from which to
create your own test or production programs. Simply add more

function calls to this same program, if you wish, to test further

services.

/
**File:MAKECALL.C

*%

**Desc:Sample telephony program

*%

**This NetWare Telephony Services program opens a stream,
**makes a call, and closes the stream.

*%

**This program is written for Borland C 4.0 for Windows 3.1. It
**is compiled as an EASYWIN program, so that | didn't have to
**include all the Windows "overhead" code but can just get to

**the good stuff.

*
*%

*DISCLAIMER

*%

*Novell, Inc. makes no representations or warranties with respect to
**any NetWare software, and specifically disclaims any express or
*implied warranties of merchantability, title, or fitness for a

**particular purpose.
%

**Distribution of any NetWare software is forbidden without the
**express written consent of Novell, Inc. Further, Novell reserves
**the right to discontinue distribution of any NetWare software.

*%

*Novell is not responsible for lost profits or revenue, loss of use

**of the software, loss of data, costs of re-creating lost data, the

**cost of any substitute equipment or program, or claims by any party
**other than you. Novell strongly recommends a backup be made before
**any software is installed. Technical support for this software

**may be provided at the discretion of Novell.

%

**Programmers:

*%

**IniWhoFirm

NetWare Telephony Services for Application Developers 55

*%,

*KVWKevin V WhiteNovell Developer Support.

*%

**History:
*%

*\WhenWhoWhat

*%

**(Q7-21-94kvwFirst code.
**(Q7-22-94kvwAdded disclaimer
*/

JHHRFIREFFIIAFFIIEFFIIEFFIRIIFIRAFFFIAFFFIRRIFFRIIFFIIIFFIIIFFRIAF Kk

**Include headers, macros, function prototypes, etc.
*/

/*
**ANSI

*

#include <stdio.h>
#include <string.h>

/*
**Windows
*

#include <windows.h>

/*
**Telephony
*

#include <acs.h>
#include <csta.h>

/ T

**This function is the entire program, as it is very simple.
**Prompt user for input, open a stream, make a call, close the stream.
*

void main(void)

/*
** The following are defined for the first call, acsOpenStream
*

/

ACSHandle_t acsHandle;

InvokelDType_tinvokelDType;

InvokelD_tinvokelD;

StreamType_tstreamType;

ServerlD_tserverID;

LoginID_tloginID;

Passwd_tpasswd;

AppName_tapplicationName;

Level_tacsLevelReq;

Version_tapiVer;

unsigned shortsendQSize;

unsigned shortsendExtraBufs;

unsigned shortrecvQSize;

unsigned shortrecvExtraBufs;

PrivateData_t*privateData;

RetCode_trCode;

/*
** The following are additional variables necessary for
** acsGetEventBlock

*

CSTAEvent_teventBuffer;

unsigned shorteventBufferSize;

unsigned shortnumEvents;

/*
** The following are for the cstaMakeCall
*/

DevicelD_tcaller,callee;

56 Novell Developer Notes— September/October 1994

/*
** Miscellaneous variables
*/

short done=0;

/*
** Setup parameters for call to open stream. Also, prompt user for
** input.

*/

invokelDType=LIB_GEN_ID;

invokelD=0; /* don't need it, but set to zero anyway */
streamType=ST_CSTA; /* want to use csta functions */

strepy(serverID,"ATT#G3_SWITCH#CSTA#PRV-NMS");

printf("\nEnter your user name:");
scanf("%s",loginID);

printf("\nEnter your password:");
scanf("%s",passwd);

printf("\nEnter your extension:");
scanf("%s",caller);

printf("\nEnter the extension you want to call:");
scanf("%s",callee);

strcpy(applicationName,"Simple App");
acsLevelReq=ACS_LEVEL];
strcpy(apiVer,CSTA_API_VERSION);
sendQSize=0; /* default size queue*/
sendExtraBufs=0; /* use default number */
recvQSize=0; /* use default size */
recvExtraBufs=0; /* use default number */
privateData=NULL; /* no private data */

/*
** Open the stream with above parameters

*/
rCode=acsOpenStream(&acsHandle,invokelDType,invokelD,streamType,
serverlD,loginID,passwd,applicationName,acsLevelReq,
apiVer,sendQSize,sendExtraBufs,recvQSize,recvExtraBufs,
privateData);

if (rCode < 0)

printf("acsOpenStream failure...");
return;

}

else

printf("acsOpenStream success\n");
invokelD=rCode;

}

/*
** Block until the confirmation has been received that the stream

** was successfully opened. Just because NetWare returned the function
** code doesn't mean the stream has been opened yet.

*

/

eventBufferSize=sizeof(CSTAEvent_t);
rCode=acsGetEventBlock(acsHandle,&eventBuffer,&eventBufferSize,
privateData,&numEvents);

if(rCode==ACSPOSITIVE_ACK)

{

if(eventBuffer.eventHeader.eventType == ACS_OPEN_STREAM_CONF)
{

printf("ACS_OPEN_STREAM_CONF message has been received\n");
}

else

printf("event type is incorrect...");
return;

NetWare Telephony Services for Application Developers

57

}
}

else

printf("acsGetEventBlock failure...");
return;

}

/*
** Now that the stream has been successfully opened, go ahead and
** jssue the make call function.

*/

rCode=cstaMakeCall(acsHandle,invokelD,caller,callee,

privateData);

/*
** Now we need to poll for events until a confirmation has been

** received that the PBX has been able to make the call. Note that
** if something is invalid, the program will enter an infinite loop,

** as this simple program just sits and waits until a confirmation

** returns that is successful.

*

/

while (!done)

rCode=acsGetEventPoll(acsHandle,&eventBuffer,&eventBufferSize,
privateData,&numEvents);

if(rCode==ACSPOSITIVE_ACK)

{

if(eventBuffer.eventHeader.eventType == CSTA_MAKE_CALL_CONF)
{

printf("CSTA_MAKE_CALL_CONF message has been received\n");
done=1,

}

else

{
printf("event type is incorrect...");
}
}

/*
** All done! Time to close the stream now.

*/
rCode=acsCloseStream(acsHandle,invokelD,privateData);

if (rCode < 0)

printf("acsCloseStream failure...");
return;

}

else

printf("acsCloseStream success\n");

return;

}

Getting Help Two magazines provide programming information for members of
the Novell Professional Developers Program--Bullets and
Developer Notes. Both of these will contain sample code, as well
as information and TeleTips, a new program that will cover
telephony tips.

58 Novell Developer Notes— September/October 1994

Future of the SDK

In addition, a faxback service and a telephony forum on
CompusServe will both be online soon (and both will include
Teletips). And, of course, there is telephone support, where you
can work directly over the phone with members of the Novell
Developer Support group.

The future holds nothing but exciting advancements for NetWare
Telephony Services. As the Telephony product is enhanced, the
SDKs will be enhanced as well, so that everything that
Telephony Services provides will be available for you to use in
your applications. There will be support for other client platforms
as well as new features for existing platforms. Also, as PBX
drivers are introduced and enhanced, you will be able to take
advantage of a larger set of the TServer API calls.

Keep your eye on Bullets, Developer Notes, FaxBack, and
CompusServe for announcements on new releases. All in all,
NetWare Telephony Services is an exciting developmental area
involving integration of two very valable tools--the computer and
the telephone.

NetWare Telephony Services for Application Developers 59

60 Novell Developer Notes— September/October 1994

